A\
p 9

4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

2\

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

A Survey of the Origins and Physical Importance of
Soliton Equations

J. D. Gibbon

Phil. Trans. R. Soc. Lond. A 1985 315, 335-365
doi: 10.1098/rsta.1985.0043

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1985 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;315/1533/335&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/315/1533/335.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 315, 335-365 (1985) 335

Printed in Great Britain
A survey of the origins and physical importance of soliton equations

By J. D. GisBON
Department of Mathematics, Imperial College, London SW7 2BZ, U.K.

An introduction to the subject is given in an elementary way for the non-specialist,
outlining why many completely integrable systems, although special, play a significant

/

:é role in wave motions in applied mathematics and theoretical physics.
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f-‘dE 1. INTRODUCTION

E 8 On a recent visit to Japan I had a chance to view a graph that showed the fluctuations in the
o number of papers published concerning solitons. Over the last seventeen years, the number has

amounted to many thousands and still shows little sign of abating although the ‘soliton
gradient’, while still positive, is less steep than it was five years ago.

In the earlier days of the subject in the late 1960s and early and middle 1970s much interest
was aroused in parts of the scientific community by the mildly romantic story of John Scott
Russell’s discovery of the soliton, which was first published in Scott Russell (1844). Many of the
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early papers were motivated by problems arising in plasma physics, nonlinear chains or fluid
dynamics. It has become increasingly clear, however, that the subject has moved on from there
and a great wealth of literature of a purer mathematical nature related to Lie algebras, and
particularly Kac-Moody algebras, has grown up in an attempt to address some of the
fundamental problems that need to be answered concerning the nature of integrability in partial
and ordinary differential equations. This Discussion Meeting is an attempt to identify some
of the important areas of new development on both the pure and applied sides of the subject.
Anyone present at any of the big meetings over the last decade, in which algebraic geometers
and experimentalists have rubbed shoulders, will attest to the enormous diversity of the subject!
The application of completely integrable systems (on which I will enlarge later) has spread
rapidly into fundamental particle physics, plasma and fluid dynamics, statistical mechanics,
many areas of solid state physics, biology, laser and fibre optics. The association of completely

~ integrable systems with Lie groups and algebras and the rich variety of problems that occur

i on the periodic domain where concepts in algebraic geometry are necessary, opens up a totally
S E different area of the subject to the pure mathematician. The enormous spread of the subject
M can often cause problems for the new or fringe participant at a meeting at which a broad
0 5 selection of these wares are on view. Clearly I cannot hope to even mention all these topics,
anf@) yet alone give them a cursory introduction. The papers by Dr Ward and Sir Michael Atiyah
= in this symposium discuss multidimensional problems, including the self-dual Yang—Mills and

Bogomolny equations, and problems of this type I will leave to them. The paper by Dr Ercolani
and Professor Flaschka deals with some of the algebro-geometric ideas necessary in studying
the periodic problem and again I will leave this topic to them.

My main concern will be to show how many of the main partial differential equations (p.d.es),
which have the genuine soliton property, fit into a framework in applied mathematics and
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theoretical physics that is very broad in application. It is wrong to suppose that because the
number of equations that have this property is small, the subject is no more than a curiosity.
As I will attempt to explain later, various scaling methods produce certain equations over again
in whole ranges of subjects precisely because the same type of dispersive wave phenomena seem
to occur almost universally. In many cases, it is precisely these equations that are solvable by
what is now known as the inverse scattering transform (i.s.t). It is on this idea that I will
concentrate in the first half of this paper, along with a brief explanation of the i.s.t. The paper
is written for the reader new to the subject, not for the specialist. Because of the diversity of
the applications I have necessarily had to be selective in my topics.

Our main concern will be to study how certain classes of p.d.es and differential difference
equations arise and how they can be solved. We will restrict ourselves to Hamiltonian systems
and so those with which we will deal must be strictly dissipationless.

In a general sense therefore, we will be dealing with infinite-dimensional Hamiltonian
systems from which one would not normally expect more than three integrals of the motion:
mass, momentum and energy. In some finite-dimensional Hamiltonian systems, only one
integral may exist. For fluid or plasma problems, the basic equations of motion are usually of
the continuity type and these integrals are easily found but solutions of the equations as they
stand are often impossible when dispersion is included. Except in very unusual circumstances
(Benney 1973 ; Gibbons 1981) the ideas we will be discussing are not applicable to nonlinear,
dispersionless p.d.es, which usually give breaking solutions.

Although most full systems of nonlinear dispersive p.d.es have only a restricted number of
symmetries (and hence conserved quantities) they can be reduced, by certain types of
perturbation theories, to p.d.es that have an infinite number of integrals. If these integrals are
in involution (i.e. they commute) then the reduced system is said to be ‘completely integrable’.
The main example, which is elaborated in §3, comes from trying to find which equation,
or equations, governs the motion of small amplitude waves in dispersive nonlinear media. Over
the years, methods have been devised for reducing these often large and intractable sets of
equations to something that can be handled more easily, even numerically. Such weakly
nonlinear perturbation methods generally come under the blanket title of ‘reductive’ pertur-
bation theory, which will be explained in §3. From a whole range of problems attempted
independently in the 1960s in plasma physics and fluid dynamics, the evidence grew that the
commonest equation governing small-amplitude long-wave phenomena was either

Uype ottty +u, =0 (1.1)
or Vpra T BV, 40, = 0. (1.2)

Equation (1.1) has been known since 1895 when it was derived by Korteweg & de Vries (1895)
when they studied the evolution of long waves on shallow water, and consequently (1.1) has
become known as the K.d.V. equation. Equation (1.2), named with less imagination, has be-
come known as the modified K.d.V. equation or m.K.d.V. equation. Miura (1968), discovered
that there exists a transformation between the two equations

ou = i(Gﬂ)%vx-—ﬂvz, (1.3)

which takes the form of a Riccati equation and is therefore linearizable. Furthermore since (1.1)
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is invariant under the Galilean transformation, x—>x—aA¢; t—t¢; u—>u—A (A constant), we
observe that the transformation v = F (6/8)y,/y reduces (1.3) to

% a L
St W = lady (1.4)
in the new coordinate frame. Since & can be scaled in (1.1), a convenient choice of @ = — 6 turns

(1.4) into the Schrodinger equation of quantum mechanics

a2
(—5;5+u)¢_w, (1.5)
where the time dependence of ¢ can be found from (1.2) and comes out to be

%Lf.y%%g_:;(u-{-/\) %—f— = fif, f constant. (1.6)

This result, found by Gardner et al. (1967), opened the way to a whole new study of equations.
We can immediately see from (1.5) that 4 acts as a potential in a scattering problem which
has a constant energy spectrum no matter how u changes with ¢ The results of scattering theory
are now available to us, particularly the work of Gel'fand & Levitan (1955) in scattering theory
which shows how to reconstruct u(x, ¢) from given scattering data (i.e. the discrete spectrum
and the reflection and transmission coeflicients). Gardner et al. (1967) mapped out how this
could be done to find u(x, ¢) from initial data. Around the same period the same group showed
that the K.d.V. and m.K.d.V. equations had an infinity of integrals of the motion and
subsequently Zakharov & Faddeev (1972) showed that these were in involution and so the
system was formally ‘completely integrable’ in the Hamiltonian sense.

These results, fascinating as they are, would not have had the impact they have if they were
confined to just the K.d.V. and m.K.d.V. equations. The Miura transformation, at first sight,
looks like one of those accidents in science that has no application elsewhere: in fact this is not
so. Lax (1968) recast the problem in a different way and in doing so opened up the idea of
associating a spectral problem with a constant spectrum to other equations.

Let L be a differential operator with spectrum A so that

Ly = Ay (1.7)

We require the evolution of L, which can be deformed in time ¢, such that its spectrum A remains
constant. We call this an isospectral deformation. Differentiation of (1.7) with respect to ¢ gives

Ly + Ly, = Ay, (1.8)

and we easily see that if the time evolution of  is described by the introduction of another
operator P such that

¥, =Py (1.90)

then we have L,=PL-LP=[P,L]. (1.96)
Let L be the operator

L =—0%/0x®+u(x, ), (1.10)

which is symmetric, and let us take the most trivial antisymmetric operator for P, namely
P = —3d/0x. We obtain no more than u,+u, = 0, which is the trivial unidirectional wave

[ 3]
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equation. The next suitable antisymmetric form for P, in which we have adjusted the coefficients
for simplicity, is

o 0
+ 6u—+3u, +£(1). (1.11)

P:_45; 0x

Equations (1.6) and (1.11) are the same if A is substituted from (1.5). Introduction of (1.10)
and (1.11) into the Lax commutation relation gives the K.d.V. equation. For boundary
conditions u(x,¢)—>0 as |x|— o0, the single solitary wave solution can be found easily from
integrating the K.d.V. equation directly:

u = —1a? sech®1(ax—a®t+9), (1.12)

where a and ¢ are arbitrary. This specializes the ‘cn?’ Jacobian elliptic solution for free end
boundary conditions. Another expression in a stationary frame is the Weierstrassian elliptic
function u = —22(x). The origin of these elliptic function solutions and their generalizations
is difficult to explain simply. The origin of the soliton solutions is easier. The spectral problem
(1.5), in which A is the ‘energy’ eigenvalue, will have a bound (negative) energy spectrum,
which is discrete, and a continuous (positive) energy spectrum (A = £2), both of which are
determined from the initial data u(x, 0). The amplitude function «,, of each soliton corresponds
directly to a discrete eigenvalue (a, = 2«,,). Consequently, if some given initial data has no
discrete eigenvalues, then no solitons will emerge. The continuous spectrum corresponds to
dispersive oscillatory waves that have a self-similar structure. The word ‘soliton’ was indeed
coined by Zabusky & Kruskal (1965) as a solitary wave that behaved in a particle-like fashion.
Figure 1 shows a numerical solution displaying the interaction of two K.d.V. solitons, set well
apart initially. The preservation of the wave after collision is due to the constancy of the
spectrum.

Ficure 1. Collision of two K.d.V. solitons. Initially the larger wave starts on the left and then overtakes the
smaller after collision in the centre of the picture.

[4]
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It is at this point that we can run into the different usage of the word ‘soliton’. The solid
state physicist or field theorist might use the word to describe a solitary wave that takes the
system from one vacuum state to another in finite energy as in the ¢* equation

Poz— P = 2¢° —@. (1.13)

This equation has vacuum states at ¢ = 0, ¢ = £ 1/4/2, and the solitary wave (known as a
kink)
@ ==%(1/v2) tanh[y(x—v)/v/2], ¥y*= (1= (1.14)

does indeed take the system from ¢ = —1/4/2 to = +1/4/2 in finite energy. The sine-Gordon
equation

Prz— Py = SINQ (1.15)
with an infinity of stable vacuum states ¢ = 0 (mod 21) also has a solitary wave solution
@ = 4 arctan exp [y(x—vf)], (1.16)

which does the same thing. However, the ¢* equation shows no evidence in figure 24,b,
numerical or otherwise, of displaying truly elastic particle-like behaviour. The kinks (1.14) lose
energy on collision and decay in amplitude, i.e. the collision is not elastic. In contrast, the
sine-Gordon equation is well known to possess the same properties as the K.d.V. equation, i.e.
it is associated with an isospectral problem (different from (1.5)). The use of the word soliton
in both contexts therefore seems confusing as one equation is completely integrable and the

Ficure 2. (a) High-energy collision of a ¢* kink and anti-kink; () low-energy collision of a ¢* kink and anti-kink;
(¢) head-on collision of two sine~Gordon kinks. Note the elastic behaviour in comparison with the ¢* equation.

[ 5]
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other is not. The concept of the soliton is nevertheless valuable even in non-integrable cases
because it describes finite energy motions between stable equilibrium states that cannot be reached
by perturbation theory. The linear view of physics generally considers excitations about a well
defined stable ground state; for example, phonons in a lattice. Use of perturbation theory will
identify the normal modes of the system about this ground state. The soliton idea is valuable
because it enables us to consider stable states of a nonlinear system which are both localized,
which have finite energy and which maintain their identity under the influence of other
excitations. While the word ‘soliton’ has become universal, the idea of the soliton has different
meanings and names in different parts of physics. Solitary waves, kinks, monopoles, instantons,
fluxons, vortices, etc. are just some of the names that describe finite-energy localized solutions
of nonlinear field equations in various corners of physics. To the physicist who is interested in
these types of nonlinear excitations, the exact integrability of the system is not important
because the very existence of a stable, local, finite, nonlinear energy excitation (a soliton) can
drastically change the partition function of a system. For a discussion of this type of problem
the reader is recommended to read the review article by Bishop et al. (1980) and the articles
in Bishop & Schneider (1978). In the sense I have defined above, in which we may be
considering systems with maybe 10%® degrees of freedom the aim of the theoretical physicist
studying condensed matter or field theory (say) may be entirely different from the applied or
pure mathematician. The applied mathematician is generally interested in solving the initial
value problem for a p.d.e. wherever possible. The integrability of the equation is therefore
important and consequently the classification of integrable p.d.es and o.d.es of applied mathe-
matics is of interest. The pure mathematician is also interested in integrable systems, but more
from the sense of what integrability actually means as opposed to the properties of specific
equations.

To ask if any given p.d.e. is completely integrable is a question to which there is not yet a full
answer. There are two tests that give some idea whether a p.d.e. can be solved in this fashion,
but neither is definitive and I will defer remarks on these until later. There are, however, certain
classes of equations that are well understood and which also, importantly, have direct physical
significance. I have already indicated how the K.d.V. and m.K.d.V. equations are the
‘canonical’ equations for the weak evolution of long waves (for example, like solitary waves).
This type of wave motion is important because it describes how compressive pulses evolve in
plasmas, water waves and elastic rods and strings, for example. Another even more common
type of wave motion is oscillatory in nature. Various perturbation procedures, such as the
method of multiple scales, show how to find the evolution of the slowly varying envelope
A(X, T;) of a packet of oscillations. In closed nonlinear dispersive systems, the nonlinear
Schrédinger (n.l.S.) equation

.04 | (0 %4 .
QIa—T;'F(W)éF*‘ﬂAlAl _O»

X=e(x—cgt), T,=€% o=wk)

(1.17)

is generally the evolution equation that governs the-modulation of an almost monochromatic
wave. Benney & Newell (1967) and Newell (1974) have shown how a very wide class of systems
will yield (1.17) for small amplitude wave packets. It turns out that the n.l.S. equation is also
completely integrable like the K.d.V. equation. Zakharov & Shabat (1972) showed that a
matrix formulation of the Lax pair principle is required. Solitons are possible (not possible)

[6]
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when 8 9%w/0k? > 0 (< 0) for boundary conditions 4->0 as | X|- c0. Dr Mollenauer’s paper
(this symposium) on the soliton laser uses this equation. An optical fibre is a dispersive, almost
lossless medium down which light in very short pulses (picosecond duration or less) can travel.
For certain materials and frequencies, f# 0%w/0k® > 0 and soliton formation occurs in the fibre.
This is then fed through an amplifier and the pulse is reshaped again before being re-cycled
again through the fibre loop. The combination of the two processes produces considerable pulse
narrowing. The optical fibre is an exciting application of n.1.S. solitons, which almost certainly
will become very important in fibre optical devices. Nonlinear optics is a fertile ground for
interesting nonlinear phenomena. It even turns out that the lossless optical amplifier is an
integrable system. Certain problems in optics such as the attenuation or amplification of
ultra-short pulses (modulating carrier waves usually in the visual frequency range) give rise
to the sine-Gordon equation mentioned previously in (1.15) (Lamb 1971). In characteristic
coordinates this is (+ for amplifier; — for attenuator)

@, = Esing, (p—>0 (m0d21t),} (1.18)

|&|— 0.

The sine-Gordon equation, as well as its role as a model field equation in classical field theory
and as a pinning model in solid state physics, is also a sister equation to the n.L.S. equation.
It occurs in the weakly nonlinear long-time and space-scale limit of those dispersive systems
that are coupled to external sources of potential energy (Gibbon et al. 1979; Gibbon &
McGuinness 1981) (the n.l.S. equation describes closed systems in equilibrium).

These are three quite general types of wave motion, the first two of which at least are very
broad indeed in their application. Another very common phenomenon is that of wave
resonances. These usually take three forms.

(1) Three-wave mixing. This involves the coupling of 3 frequencies and wavenumbers in a
triad. This type of phenomenon is very common in physics and can be found in light scattering
in crystals, laser cavity devices, electric circuits, water waves and plasma problems. The resulting
equations for the 3-wave envelopes of this quadratic resonance phenomenon are solvable by
inverse scattering (Zakharov & Manakov 1976; Kaup 1976; see also Craik 1978, 1984).

(ii) Second harmonic resonance. This resonance occurs when two wavenumbers £, and £, satisfy
2k, = k, and 2w, = w, and can occur in any wave dispersion problem if the dispersion relation
has the right shape. The wave envelope equations for this problem are partly solvable by inverse
scattering (Kaup 1978).

(iii) Long-wave—short-wave resonance. If instead of considering the evolution of long waves and
wave packets as separate problems, we look for spatial and temporal scales that will allow a
coupling, it is found to be possible in some problems if the group velocity of the wave packet
(short wave) equals the phase velocity of the long wave. The inverse scattering problem is
difficult since the Lax pair is a 3 X 3 problem (Yajima & Oikawa 1976).

This latter resonance brings us to a more general problem in the coupling of long and short
waves. Zakharov (1972) proposed a model that coupled electron density oscillations (Langmuir
waves) to ion sound waves. The resulting equations (in one dimension) are not integrable by
i.s.t. as they stand. In fact very little is known about them, except that in the limit when the
ion sound speed approaches infinity, they reduce to the n.L.S. equation, which is integrable.
Rather curiously, Zakharov’s equations arise in Dr Scott’s paper (this symposium) on the

[7]
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propagation of solitons in polypeptides, in which the elastic sound waves in the helical protein
structure are coupled to the dipole-dipole interactions arising from a resonance in a particular
C=0 bond in the molecule. In §3 I give reasons why these equations arise in this problem.

In the above paragraphs I have mentioned five or six major types of wave propagation and
coupling, which spread across a wide variety of problems. The bulk of these yield equations
solvable by the i.s.t., usually in some weakly nonlinear limit. This is the remarkable fact in
this subject, which cannot be ignored and which shows how wide is the application of soliton
theory. I have concentrated mainly on the ‘classical’ applications of solitons. The integrability
of the self-dual Yang—Mills equations (even though the manifestation of the solutions is
different) and certain equations in relativity, solid state physics and even quantum statistical
mechanics attest even more to their importance. In classical physics and mathematics, most
of the original equations are not integrable. By various forms of perturbation theory integrable
equations are produced. These have an infinity of integrals where the underlying full system
probably has only three: mass, momentum and energy. Why these scaling methods introduce
extra symmetries that were not there in the first place is not fully understood and is a problem
that needs to be answered.

Our main concentration has been until now, on classes of dispersive wave problems giving
rise to p.d.es. It is obvious that the idea of the Lax pair will extent to ordinary matrices with
time-dependent elements. In this fashion Moser (1975) proved the integrability of the system
of unit masses on the line, each under an inverse square potential from all the others. The matrix
L is now an isospectral matrix instead of a differential operator. From this the integrals of the
system can be calculated. The idea of isospectral matrices was first used by Flaschka (1974)
and Manakov (1975), who independently proved the integrability of the Toda lattice in this
way. For the applied mathematician who is interested in solving problems, the idea of the Lax
pair is fundamental. Given a set of equations that arise in some problem in applied mathematics,
the question arises, how do we know whether a Lax pair exists or not? There is no absolutely
definitive answer to this question (yet). Two methods exist that go some way towards an answer.
The first is a direct method of calculating the Lax pair from the equation (if it exists), which
was first designed by Wahlquist & Estabrook (1975). The method yields a Lie algebra (if the
system is integrable), the representation of which will give the Lax pair. I will illustrate this
idea in §4 with an example. The pure mathematician would then prefer to turn the problem
around on its head and consider the classification of Lie algebras as fundamental to the
understanding of which equations are integrable. The papers by Dr Wilson and Professor
Frenkel to a certain degree are concerned with this fundamental approach. This area has
blossomed over the last few years and to the applied mathematician seems as technical as some
of his methods do to the pure mathematician. Nevertheless, it is clear that Lie algebraic ideas,
particularly Kac-Moody algebras, are fundamental to a deep understanding of integrability
in nonlinear problems.

Finally, there has been some considerable interest in the idea of the so-called ‘Painlevé
property’ as a test for integrability, particularly since Ablowitz & Segur (1981) showed how
the Painlevé transcendents were connected with the K.d.V. and other equations through their
similarity variables. As a concept, the idea can be used to generalize the idea of integrability
to both p.d.es as well as o.d.es. These ideas go back to Kovalevskaya’s (1890) integration of
a rigid body (see Professor van Moerbeke’s paper (this symposium)). I will spend a little time
in §5 discussing these since they provide a picture that unifies some of these ideas with methods
for integrating finite dimensional o.d.es such as the Hénon-Heiles equations.

[81]
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2. INVERSE SCATTERING FOR K.D.V., HAMILTONIAN FORMULATION AND OTHER
INTEGRABLE EQUATIONS

(a) Inverse scattering

The elegant result that the potential u(x, f) of a Schrodinger equation

a2
[—-—-+u(x,t)]¢=/\lﬁ (2.1a)
Ox®
must evolve according to the K.d.V. equation if ¢ satisfies

_W Y L Y
0—~a—t—+4$——6u—a—;—3ux1ﬁ——ﬁﬁ (2.10)

is of little use unless one can solve for u(x, t). Normally in quantum mechanics we are given
u and require ¥ subject to the condition that ¥ is square integrable. Here we have boundary
and initial conditions on u(x,f) (the first of which will determine ¥ asymptotically) and we
require u(x, t). This requires us to solve what are known as the direct and inverse scattering
problems. The procedure is a little messy so I will only give the bare outlines and relegate even
some of that to an Appendix. First we must find the scattering data, which we do as follows.
Let us consider boundary conditions u(x, t) -0 as | x| > 00, with some sufficiently smooth initial
data u(x,0). Then we may define eigenfunctions (Jost functions)

D ~ C—ikx, X—> — 00,

' ) eilcz, (2.2)

__ } x—>+ 00,
Y~ e—ikz’

where the energy eigenvalue A = £2. Since the Wronskian W(¥, ¥) = 2ik and is non-zero for
k# 0, ¥ and ¥ are linearly independent and we may write

® = alk, ) T+b(k 1) V. (2.3)

Equation (2.3) is the scattering theorists’ way, in k-space, of matching a wavefunction ¥
travelling to the left and scattering into @ and back-scattering into ¥. The quotients 1/a and
b/a are known as the transmission and reflection coefficients. We need to determine these and
the energy spectrum in terms of the initial conditions. Initial data u(x, 0) will determine A and
since A is constant it is determined forever. From (2.14) we have a continuous positive energy
spectrum A = £% and a negative bound energy spectrum A = —«2, which is discrete. We can
now determine a and 6. For instance, using the continuous spectrum we have

Y~ emike Xx—>—00,
. . (2.4)
Y~aehrppelkr x4 0.
In (2.15) we now easily find that
a=0; b, = (8ik% b (2.5)

and that f(t) = 4ik®. Consequently we now have a(k, t) and b(k, t) in terms of their initial values

a(k,t) = a(k,0); b(k,¢) = b(k,0) exp (8ik%). (2.6)

(9]
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Hence, given initial data u(x,0) we can, at least in principle, determine the bound states «,,,
the reflection and transmission coefficients b(k, 0)/a(k,0) and a~1(£,0), and we already know
the dispersion relation w = —£3. These are the scattering data and are sufficient to determine
the evolution for all ¢.

The next step, the inverse problem, is more tricky and much of the calculation must be
relegated to Appendix I. Suffice to say that the eigenfunctions ¥ and ¥ may be written in

the integral representations

o]

¥ = exp (ikx) + J K(x,y) exp (iky) dy, (2.7a)

x

0

Y = exp (—ikx) + f K(x,y) exp (—iky) dy, (2.7b)

x

where, notably, K and K are k-independent. The kernels K and K turn out to be equal and
satisfy the linear integral equation

K(x,y)+B(x+y)+J K(x,z) B(z+y) dz = 0, (2.8a)
x

_ L[ 0E0) i - —kn T
where B(x) = o f_oo 2(k,0) e dk+n2=1 ¢, € 0%, (2.85)

where a(k,0) and b(k, 0) have been defined above and ¢,, = ¢, (0) exp (8«3 ¢). Equation (2.14)
is known as the Gel'fand-Levitan equation since it was derived in scattering theory by them
(Gel’fand & Levitan 1955; Marchenko 19524,56). The potential u(x, ¢) is reconstructed from

K(x,y) by
u(x,t) = —2 dK(x,x)/dx. (2.9)

This procedure is not as painful as it looks! For instance, we see that the continuous and discrete
parts of the spectrum in B(x) are separate. Let us take the reflection coefficient # = 0 and choose

K(x,y) = % E,(x,8) e, (2.10)
n=1

then (2.8) reduces to a set of N linear equations in the F}:

X exp [(k, +K,,) x]
0=F +c (8) en®+ > ¢ (t n__m 2F . 2.11
I (2.11)
Solving for these, (2.10) and (2.11) give, after some algebra,
a2
u(x, t) =—2wln det M, (2.12q)
2(a;a;)
My = b+ X [0i+03)/2], (2.120)
0; = a;x—a}t+68;, a; = 2k, (2.12¢)

This formula indeed gives the whole set of soliton solutions of K.d.V. including the single solitary
wave solution. Rational solutions of the K.d.V. equation can be found by taking certain limits

[ 10]
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in the N-soliton formula (2.12) but these solutions are best expressed in the form given by Adler
& Moser (1978):

aZ
u=—273n@, (2.13a)

and the @, are found by recursively solving the Wronskian relation W(@

0,,)=
n+1> ~ n—-1
(2n+1) @2, where @, =1 and @, =x. At each stage we can introduce an integration

factor which must be t-dependent. The next two @s are
0, =x*+12t, (2.135)
0, = x4+ 60x3t— 72022 (2.13¢)
How the various elliptic function solutions are found is an entirely different problem as the
above inverse scattering procedure depended upon the boundary conditions u—0 as | x| co.
The papers by Novikov (1974) and Lax (1975, 1976) deal with the periodic problem for the

K.d.V. equation, although the paper in this symposium by Dr Ercolani and Professor Flaschka
contains a more up-to-date set of references.

(b) Hamiltonian formulation and conservation laws

To put the K.d.V. equation in Hamiltonian form we require a class of equations of the type
(see Gardner 1971 and Gardner ¢t al. 1974)

0 (6H dH,
w=—5( oK), Qulu) = k. (2.14)
Then there exists a recursion relation between the @y,
0 0® 0 0
o Q) = (- 2222 u) Qutw) (2.15)
with a sequence of conserved quantities
HK=fPK(u, Uy, ...) dx. (2.16)
If we begin with @, = u (i.e. with the equation #,+u, = 0) then we easily find that
Qo = Uy, — 3u?, (2.17a)
Qs = Uyppr— 10uu,,, — 5u + 1043, (2.17b)

Consequently, the K.d.V. equation is the second in the hierarchy and has a infinite sequence
of conserved quantities

1 1
H, = EJu dx, H, = Efuz dx,

(2.18)

1
H, = EJ‘ (2uug, +u —2u®) dx, etc.

Obviously the hierarchy of higher K.d.V. equations, whose Qx form the conservation laws of
the K.d.V. equation itself, can be found by constructing higher operators P in the Lax equation

[ 11 ]
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(1.95). Given an operator L, Gel’fand & Dikii (1976) show how to construct all the hierarchy
of operators P® that will go with it. The recursion operator relation (2.15) was found by Lenard
(see Gardner et al. 1974). Magri (1978) has shown how it can be constructed directly from
the symmetries of the equation without recourse to the Lax pair. He was also the first to show
that the K.d.V. equation has a bi-Hamiltonian structure.

There is an alternative method of finding the conservation laws directly from the transmission
coefficient. In the W.K.B. approximation, the reflection coefficient is small for high energies
so we shall neglect it and just write the wavefunction ¥ ~ a exp (—ikx) = exp (i§) where
S = Ina(k, x) —kx. Substitution of ¢ into the Schrodinger equation gives

2 —iS,,+u=4£k% §,=—k+(Ina),. (2.19)
Expanding (Ina), we have
(Ina), = %+z§+%+.... (2.20)
We find
2a,—u =0,
2a,+ia, , = 0, (2.21)

2a3—a}+ia, , =0, etc,

from which we observe, on recursively calculating the [ a; dx, that the odd ones give the
integrals of the K.d.V. equation! This idea can be found in Ablowitz et al. (1974).

(¢) Other nonlinear equations

The simplest way to summarize some of the main results on other nonlinear equations is to
list some of the results that are analogous to the K.d.V. equation. A matrix generalization of
the isospectral idea was first used by Zakharov & Shabat (1972) and generalized further by
Ablowitz et al. (1974). This involves a Dirac equation form for the spectral problem and we
shall make this our first category.

(1) 2 X 2 matrix problems
The spectral problem

oY, /ox+idy, q%,} (2.22)
Ny /Ox—iAYry = 1ifry,

has the 2-channel Schrodinger equation form

(—02/ox®+ V) y = A%y, (2.23q)
where the potential matrix is
V= [q’ q«'ﬂ]. (2.235)
Ty qr

The following list gives the temporal dependence of the eigenfunctions and the designation of

oy [A B
o7 .24
» [C _A]w, (2.24)

¢ and r, where

[12]
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(i) r=+4q%
A= —2i2 +i|ql,
B=20g+ig, igs+ 20 £2q1q|* = 0. (2.25)
C = F 2A¢* + ig},
This is the n.L.S. equation, which will be derived in §3. When r = —¢*, the spectral problem

is skew-adjoint and negative energy eigenvalues (and hence solitons) are possible (see Dr
Mollenauer’s paper, this symposium, when both cases can occur, depending on the fibre

material).
(i) r=Fo
4 = —4iA® +2iA¢,
B = 4gA*+ 2iAq, T 2¢* — ¢, 9t +64°q,+ Gy = 0. (2.26)
C = F 49 £2i2q, +2¢" £ ¢
This is the m.K.d.V. equation.
(i) g = —rt =R,
4= —8§/4iA,
B = R,/4iA, Ry = RS, S, =—}(RP),. (2.27)
C = R}/4iA,

These equations arise in self-induced transparency (s.i.t.) and other areas and contain the
sine—~Gordon equation: when R is restricted to be real, let R = ¢, and § = * cos ¢, then (2.27)
integrates to

@yt = Lsing. (2.28)
(iV) q = r¥ = A2’
A= —|4,/2iA,
4, =4, 4F, 4,,= A4} (2.29)
B = A2/2iA,
C = —A¥?/2iA,

Equations (2.29) are the second harmonic resonance equations (see Kaup 1978) mentioned
in (3.18).

(2) 3 x 3 matrix problems
(1) Given the Lax pair (Yajima & Oikawa 1976; Ma 1978)
0/ox —3i4 —4uB

L=| 0 o/0x —1d4*]|, (2.30)
i 0 d/x
i 2ad—id,) —2i|AP
P=|—24% —ix2  20i4*—a4%)|. (2.31)
0 —24 ixz

[ 13]
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Then A and B evolve according to
id;—2A4,,+24B =0, B,=—4(4%,, (2.32)

which are the long-wave-short-wave resonance equations (see (3.24) and (3.25)).

(ii) The three-wave resonance equations written in (3.16) with all u? = 1 have a decay instability
when the sign of one of the us differs from the other two, while for the explosive instability
the signs of the us must be the same. Zakharov & Manakov (1976) showed the isospectral
deformation was of third order, but Kaup (1976) has shown that in the limit > 4+ oo this
third-order problem can be factored into three separate second-order Zakharov—Shabat-type
second-order problems. The scattering problem is complicated to write down and the reader
is referred to the above references for details.

(3) Scalar Lax equations of degree three

(i) Let
L = 4D3+ (14 6w,) D+ 3(w,, —iv/ 3w,), (2.33)
) } D = 0/0x,
P =iv3(D%4w,), (2.34)
then we find that w satisfies
(wxa:x+3w32v+wx)x'—wtt = 0. (2'35)
When u = w,, then (2.35) becomes
Upgze T O(utty) y+ ity —uy = 0. (2.36)

This is the so-called Boussinesq equation, which is a 2-way version of the K.d.V. equation. This
Lax pair was found by Zakharov (1974).
(ii) Take first the pair of operators

L, = D34uD, (2.37)
P, = 9D+ 12uD3 + 15u, D+ (5u%+ 10u,,,) D, (2.38)
which give Uy = Upprpy + DUy + By Uy + BuPuy, (2.39)
and then take
L, = D*+2uD+w, } (2.40)
P, = 9D5+ 30wD?+ 45w, D?+ (20w?+ 35w,,) D+ (10w, +20ww,),

which give Wy = Wyppre+ 10WW, . + 25w, w,, + 20w, (2.41)

Equations (2.39) and (2.41) seem totally unrelated and were derived by Sawada & Kotera
(1974) and B. Kupershmidt (personal communication, 1979), respectively, as the two canonical
third-order scalar spectral problems. Fordy & Gibbons (1980) have shown in fact that they
are related in the following way:

L, = (D—v) (D+v) D,}

(2.42)
L, = (D+v)D(D—v),

[ 14 ]
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where ¥ and w are connected to the new variable v by the Miura transformations

u=uv,—10?
2.43
w= —‘vz—%zﬁ,} ( )

and v satisfies another fifth-order equation. These three fifth-order equations in #, w and v, which
are connected via (2.43), are the three equations associated with third-order scalar Lax
problems in which only one variable occurs.

(4) Discrete equations

Flaschka (1974) and Manakov (1975) independently extended the idea of the Lax
commutator bracket L, = [P, L] to matrices. In the periodic case (@, = @, ), if we choose

by a; 0 - -ay
ay by a, 0
L= |0 ab . , (2.44a)
ay - by
0 a4 0 " —ay
—a, 0 a,
P=| 0—-a0_ , (2.44 )
: N
ay - - -0
we find that the as and bs are related by
b, =2(a:—a, )%
'n ( n n l) } (2.45)
ay = an(bn+1—bn)'
Taking b, = —1Q,_, and a,, = } exp [}(Q,_, — @,)], we find that the Qs satisfy
Qn = €xp (Qn—l_ Qn) —€&Xp (Qn - Qn+1)’ (2'46>

which is the Toda lattice. Moser (1975) has shown that N unit mass particles under an inverse
square repulsive potential on the line is also a system solvable by choosing appropriate
matrices for L and P.

I have effectively given a list of the isospectral problems that solve various nonlinear
equations, although I have given only a crude sketch of how the inverse problem can be solved
for the scalar Schrodinger operator (2.1a). The other spectral problems are more complicated
to solve although the Zakharov—Shabat scheme has a certain simplicity because of the elegance
of its formulation. Ablowitz et al. (1974) considered this in detail. For higher order spectral
problems such as (2.33) and (2.37), Caudrey (1982) has shown how to solve an N X N spectral
problem of the form

39/dx = [A(A) +B(x,A)]. 9, (2.47)

where 4 and B are n x n matrices. The Boussinesq problem (2.35) comes into this category,
for example.

23 Vol. 315. A
[ 15 ]
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3. Classification of wave motions and integrable systems

To describe which classes of problems in applied mathematics and theoretical physics yield
integrable systems we must first look at different possible types of wave motions and wave
resonance interactions. Nonlinear dispersive media can support many different types of wave
motion. There are several canonical types, which occur in a variety of physical problems.
Instead of working through long and complicated particular examples I will endeavour to show
how these canonical types can arise by working from a general class of equation from the
beginning. These general classes of equations may not contain all possible physical examples,
but they can always be modified easily enough. Specific problems can be found in the
references. There are exceptions and special cases of the generalities discussed here, of course,
but we will mainly concentrate on the general classifications, rather than specific examples.

(a) Long waves
Let us assume our full system of equations has a real dispersion relation
o = w(k) (3.1)

so there are no loss terms, and let €, a small parameter, be a measure of the amplitude of the
various dependent variables

u = eu®(x,t) +2u® (x,1).... (3.2)

We now need to look for the variation of uV(x, t) over some long length scale that is connected
with e. The problem can be looked at simply in this way. For long wavelengths, we need small
wavenumbers £ and to relate these to € we write £ = €Pk, where k is a new wavenumber of
O(1) on a long scale and p is an index yet to be determined. Since the systems we shall consider
will be dispersive, w(k) will contain either all odd or all even terms in £. We will choose odd
and so we can write an expression for w (k) as

w(k) = ak+bk*+ ... (3.3)
for small k. For travelling waves with argument 6 = kx—w(k) ¢ we can now rewrite this as
0 = €P(x—at) k — br®(%PY), (3.4)
which indicates that we can take new ‘stretched’ coordinates
£E=eP(x—at), T =€t (3.5)

Most problems in plasmas and fluids have their basic equations of motion written in continuity
form through equations of conservation of mass and momentum, etc. As a simple problem,
which we shall take as an archetype, let us consider a system of equations of the form

D o
D 0 0
where ‘5} = -a*;'l'Ua (36b)

We shall leave (3.6) in scalar form although the same problem can be generalized to matrices.
L is some linear operator that is polynomial in D/D¢ and 0/0x. While not every system can

[ 16 ]
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be put in this class, it will serve as the simplest model on which to do reductive perturbation
theory. Since the dispersion relation is

L(—iw;ik) = 0, (3.7)

which must be real, we will take it as odd. Using new coordinates (£,7) in (3.5) and Taylor
expanding (3.64), we find to the three lowest orders in €:

0 0 0 0 o®
L.1e3? — —ge? — 4Py 141, P —+1, P ___ . Wy  y=0. .
{ l[e 5, ag“ u ©§]+ 2 € ag+ 992 € ag3+ }(eu +...)=0 (3.8)
The suffixes 1 and 2 mean differentiation with respect to the first and second positions in L
evaluated at (0,0). The parameter a is specified by the equation aL,; = L,. This removes the
lowest order term. To match the terms at 3p+ 1 and p+ 2 we obviously require p = % and we
are then left, at O(e}), with
Ly () +u® u®) + Lygy uff) = 0, (3.9)

which is the K.d.V. equation. The value p = } is universal for the K.d.V. equation. There are
more complicated classes of problem other than (3.6) but the scalings and the details turn out
essentially the same. The K.d.V. equation can be thought of as the typical equation that governs
the evolution of long shallow waves in the (§, 7) coordinates in quadratically nonlinear systems.
If the problem has cubic nonlinearity at lowest order then we would find p = 1 and obtain
the m.K.d.V. equation. There are an enormous number of references in which the K.d.V. or
m.K.d.V. equations have been derived. Korteweg & de Vries (1895) were the first in studying
the problem of surface waves on shallow water. Taniuti & Wei (1968) and Su & Gardner (1969)
used the reductive perturbation technique to show generally how K.d.V. occurs, although
Washimi & Taniuti (1966) derived the K.d.V. equation earlier for ion acoustic waves. Many
of the appropriate references, particularly in plasma physics, can be found in the review by
Scott et al. (1973) and Ichikawa (1979). The books by Karpman (1975) and Dodd et al. (1982)
contain an appropriate list of references. The study of the K.d.V. equation as an initial value
problem is clearly very important physically as well as mathematically.

(b) Wave packets

In (a) we found that the K.d.V. equation governs the motion of long ‘pulses’ in dispersive
systems. If instead we want to know how oscillations behave, whose wavelength is much shorter,
we need a different method. An applied mathematician would use the method of multiple scales,
but a physicist would use a rough form of slowly varying envelope approximation. Both give
the same answer: namely an evolution equation for the slowly vérying amplitude of a packet
of oscillations.

If the original equations take the form of (3.6)

D a0

say, then the method of multiple scales requires the introduction of ‘slow’ scales.

X=¢e(x—cgt); T=¢%, (3.11)

where @ or u are expanded as
p=epP+ep®+ ... (3.12)

[ 17 ] 23-2
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The full method can be found in any textbook (see Nayfeh 1973). We look for the amplitude
A(X, T) of an oscillating solution at O(¢) and obtain

¢V = A(X, T) exp (i0) +c.c. (3.13)
with L(—iw;ik) as the dispersion relation, where = kx—wt and ¢, = dw/dk. At O(€?) no
secular terms appear due to the choice of the X and 7 scales in (3.11). At O(e®), when secular
terms are removed we find that 4 must satisfy

.04 (Qw) 024 2 _
2‘57+(6F)6—X2+7A|A| =0, yreal (3.14)

The coefficient of the second derivative can be shown to be 0%w/0k? by using the second total
k-derivative of the dispersion relation. This derivation of the n.1.S. equation still holds for more
complicated right-hand sides of (3.10) provided the nonlinearity is either quadratic or cubic in
@ and its derivatives.

Hence we find that where the K.d.V. or m.K.d.V. equations arise generally for long waves,
the n.L.S. equation arises for slowly varying oscillating waves. The model problem (3.10)
actually arises in optics, where L is derived from Maxwell’s equations, ¢ is the field £ and the
cubic term arises as a nonlinear term in the polarization resulting from the refractive index
of the medium being dependent on the field at higher powers,

n=ny+n,| E|?. (3.15)

The sign of n, will determine the sign of y in (3.14). Dr Mollenauer’s paper (this symposium)
is, in a sense, based on this phenomenon. An optical fibre consists of a silica core whose refractive
index behaves as in (3.15). For certain frequencies, y(0%w/0k?) < 0 and no solitons are possible,
only self-similar solutions. For other frequencies y(0?w/0k?) > 0 and soliton production is
possible from an initial pulse fed into the fibre. The papers on the n.L.S. equation are even more
numerous than the K.d.V. equation, both in plasma physics, fluid dynamics and optics: see
references in Scott ¢t al. (1973), Benney & Newell (1967), Taniuti & Yajima (1969, 1973),
Tanuiti & Wei (1968), Ichikawa (1979), Newell (1974), Stuart & DiPrima (1978), Karpman
(1975), Chu & Mei (1970, 1971) and Dodd et al. (1982). For the place of the n.L.S. in water
wave problems, the papers by Hasimoto & Ono (1972) and Peregrine (1983) make interesting
reading. For the optical work, see Dr Mollenauer’s paper from this symposium. Indeed the
n.L.S. equation has a different life in solid state physics and vortex dynamics since it arises in
Heisenberg spin chains and problems in vortex stretching (Hasimoto 1972).

Cases where these scalings break down usually arise for values of the wavenumber when a
singularity appears in y. This occurs at second harmonic resonance and the long-wave-
short-wave resonance in capillary gravity waves (Djordjevic & Redekopp 1977).

(¢) Wave-wave interactions

Many problems in physics and applied mathematics are not quite so simple as case (b), where
only one frequency arises. Electrical engineers, laser physicists and fluid dynamicists, to name
but three groups, know well that ‘triad’ resonances can occur if a system is pumped with one
frequency that can be tuned such that a ‘signal”’ wave and an ‘idler’ form a resonance condition
k,+k, = kyand v, + w, = w,. If this happens then so-called 3-wave mixing or resonance occurs.

[ 18]
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This is a quadratic resonance phenomenon, whereas the n.1.S. occurs as a cubic resonance, and
will occur in most systems of the type

0 0
g(&,a)tp—a(pz (3.15)
or even in (3.6). Using the scales X; = ex, 7} = et and taking

@V =4, eih+ 4, e+ 4, e +c.c. (3.16)

with 0, +6, = 0,, we find that removal of secular terms of O(e?), using the multiple scales
method on (3.15), gives

0 0
(6?4'6187)1‘11 = ’}/1A3A;k, (3.16(1)
1 1
0 0 *
67_;"'6263(— A2 = ')/2/11 A3, (31617)
1 1
0 0
a7 Toaay )4 = Vs di s (3.16¢)
1 1

The behaviour in (3.16) is very different depending on the y,. Kaup ¢t al. (1979) have made
a massive review of this phenomenon. As mentioned in §2 these are solvable by the inverse
scattering transform, as they also are in several dimensions (Kaup 1980; see also Craik 1978).
Note that they are non-dispersive equations even though they were originally derived from a
dispersive system. The 3-wave mixing phenomenon is so common in physics that it can be found
almost everywhere: in Raman scattering in crystals, laser cavity devices, electric circuits,
water-wave tanks and plasma problems.

A special case of these is second harmonic resonance. This usually occurs when it is possible
to achieve 2k, = £,, 20, = w, for two wavenumbers £, and £,. Similarly to (3.16), when

@V = 4, e+ 4, e +c.c. (3.17)
we find
0 0 *
8—7—"+Cla—i A1=A2A1’ (3.180)
0 0
(8_7"-'—62@_)?)/12 = A% (318b)

This phenomenon is harder to achieve since the condition ¢,(2k,) = ¢, (k) will only occur in
systems whose dispersion relations allow this strange condition. They usually need to be
multiply branched (see figure 34a) or of the type in figure 3.

The interaction of capillary waves and gravity waves in water displays this phenomenon
because the dispersion relation (with surface tension) is of the type shown in figure 34 (see
McGoldrick (1980) and Djordjevic & Redekopp (1977)). Again, as we saw in §2, equations
(3.18) are completely integrable in a characteristic coordinate frame.

[ 19 ]
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> 1 i -
>

k €K ko 2k, k

Ficure 3. (a) The long-wave-short-wave resonance depicted on a double-branched dispersion relation. The secant
¢p at A is parallel to the tangent ¢, at B. (4) A typical dispersion curve showing second harmonic resonance
at £, and 24,. The points A and B denote the long-wave-short-wave resonance with the secant at A parallel
to the tangent at B (¢, = ¢;).

(d) Coupling of long waves and short waves

The paper by Dr Scott, in this symposium, on a possible mechanism for the propagation
of energy down a-helix-type long-chain molecules is mathematically based on a very interesting
phenomenon in wave motion which has a more general application. To illustrate the idea I
will construct a mechanical model that consists of a ‘guitar string’ that can support both
transverse waves, which occur when the string is plucked, and longitudinal compressive waves
down the string (see figure 4).

Ficure 4. Guitar string with both longitudinal and transverse propagating waves.

We shall let @ and @y, be the transverse and longitudinal displacement respectively. Without
any transverse motion we would expect lossless, dispersive longitudinal waves to propagate
down the string with a dispersion relation L(—iw;ik) = 0, arising from the linear problem

0 0

The form of L depends, of course, on the string. When the string is plucked transversely, these
longitudinal waves have to propagate along a curved string, rather like light rays curving in
a medium that has a varying refractive index. We therefore think of the dispersion relation
as being dependent on ¢

0 0

[ 20 ]
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Taking a slowly varying oscillating solution for ¢y,
@y, = €A(x,t) exp (10) +c.c. (3.21)

as for the n.1.S. equation, and matching of the scales shows that a long wave (not an oscillating
wave) is the dominant behaviour in g

@p ~€en(x, t)+.... (3.22)

We expect this because any oscillations from (3.21) would be too fast for ¢, to react. We can
therefore think of guitar string behaviour modelled by a wave equation that is driven by the
displacement in the string caused by the fast oscillations in the longitudinal mode

21 i
(5};~;2— @)n =—B7:04P). (3.23)
p

The term on the right side can be worked out dimensionally via the fact that the driving force
is the derivative of the intensity (| 4 |?) of the longitudinal forcing. Equations (3.20) and (3.23)
would then be the two basic equations governing the coupling of transverse and longitudinal
waves. Note that the only nonlinearity comes from the coupling between @1 and @y : we have
not assumed that the string is intrinsically nonlinear.

In plasma physics this phenomenon models the interaction between Langmuir waves
(electron oscillations), represented by the longitudinal mode, and ion sound, represented by
the transverse mode. The form of L turns out, in this case, to be

2
i%l;+%§+nA =0 (3.24)
and (3.23) and (3.24) are known as Zakharov’s (1972) equations.

Exactly the same equations arise in Davydov’s model (Davydov 1979 ; Davydov & Kislukha
1976), which Scott discusses in his paper. In this case, the transverse mode represents phonons
(elastic sound waves) and the longitudinal mode represents the energy that disperses along the
chain by a dipole-dipole interaction due to an infrared resonance in the carbon—oxygen double
bond of the amide group. Scott’s equations are normally expressed in discrete form, but
Zakharov’s equations are the continuous form of the model. The fundamental point about
Zakharov’s equations is that in the limit when ¢, is taken to be large, which expresses the fact
that the second-order time dependence of # is ignored, then we find that z is proportional to
| A|? and (3.24) becomes the n.1.S. equation and soliton behaviour occurs.

Another interesting limit, which we do not have space to discuss in detail, is the one-way
version of Zakharov’s equations, where (3.23) is replaced by

”z+”t/cp =—=p4.(4P),. (3.25)

Equation (3.25), coupled to (3.24), is now an integrable system which, as we saw in §2, has
a 3 x 3 Lax pair. These integrable equations arise on different scales, usually X = e(x—cgt);
T, = €*t, scales of the n.L.S. equation. One finds that two limits exist; either the n.l.S. limit
or the limit where n and | 4| satisfy (3.25) in the X, T coordinates under the condition that
¢p = ¢g- This phenomenon is known as the long-wave-short-wave resonance and was first
discussed by Benney (1976). It occurs in water waves in the interaction of gravity and capillary

waves (see Djordjevic & Redekopp (1977)) and also in internal waves (Grimshaw 1977). A

[2t]
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full discussion is given in the paper by Elgin et al. (1985). Suffice to say that this resonance
mechanism is a limit of the 3-wave resonance: &, = &, +4;; 0, = w,+w,. Think of £, and £,
being sidebands of a main wave £, such that &, = k+ex, k, = k—ex and k; = 2ex, where « is
O(1). To achieve the triad condition for the ws, we expand: w(k+ex) —w(k—ex) = w,, to find

2ex dw/dk = w,

to O(e). Hence this is satisfied provided the group velocity ¢, of the short wave (k) equals the
phase velocity of the long wave ex. The dispersion curves in figure 34, 6 show that this condition
is easily possible under these circumstances. Indeed both the long-wave—short-wave resonance
and second harmonic resonance occur in capillary gravity waves (but not together!). This
usually shows when a singularity occurs in the coefficient of 4| 4|2 in the n.1.S. equation, which
indicates that a rescaling is necessary. In water waves the scales are X = i(x—cyt), T = €it
for the long-wave—short-wave process.

(e) Dispersive systems not in equiltbrium

We have seen in (4) that, in general, the n.1.S. equation governs the motion of the amplitude
of wave packets in stable dispersive systems. There is no energy loss nor energy absorption. There
are some physical problems where the system has a source of available potential energy (a.p.e.)
even though it remains dispersive. A bifurcation problem then arises in which the character
of the problem and the scales change near the bifurcation point. Stuart’s method (Stuart 1960)
of using multiple scales near the critical point gives the amplitude equations, which operate
on a faster timescale than the n.l.S. equation. We need X = ex, 7 = €f and find that the
amplitude equations become

0 o\[ 0 0

(a_,r+()1 ‘&—X,) (a—j,‘i‘ CZ‘&—)()A = C(.A—ﬂAB, (326(1)
0 o g (Do )

(aT“@?)B = (E)T_HIOX)'A' : (8.260)

where ¢; and ¢, are the two group velocities that occur at the critical point. Equations (3.26)
are more recognizable if we make the transformations

R=+/24, S=+1—pa" !B, (3.27q)
E=—a3(X—¢,T)(c,—¢)Y, T=0d(X—¢, T)(c;,—¢c,) L (3.27b)

They b
€y become R =2, (3.284)
Py = RS, (3.285)
Sy = —3(R*P + RP*). (3.28¢)

These equations occur both in self-induced transparency (s.i.t.) (Lamb 1971) and two problems
in baroclinic wave motion (Gibbon e al. 1979). The sine-Gordon equation

@, = Esing (3.29)
is embedded in (3.26) when R is taken to be real (R = q, § = tcos@, Z = tsing). The paper
by Gibbon & McGuinness (1981) discusses this type of general instability.

[ 22 ]
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4. THE CONNECTION OF INTEGRABLE P.D.ES WITH LIE ALGEBRAS

To the applied mathematician or physicist who is more used to ‘classical’ mathematics, the
considerable portion of this symposium devoted to Lie algebras must come as a surprise. In
an attempt to explain how they occur I must necessarily take an exceedingly brief and naive
overview of how they are connected with soliton equations. Why the two are connected in a
deep sense is something I cannot hope to answer here; the specialist articles on this topic will
give a better answer. For the non-specialist who wants to see exactly how a Lie algebra occurs,
I will again use the K.d.V. equation as an example.

Let us assume that we are looking for an isospectral problem for our given p.d.e. In the most
general form, we will write it as an n X n problem

v, =Fu Ny, (4.1)

where ¥ is an n-component eigenfunction. A constant A will come in at some point and will
act as an eigenvalue. We are naturally working on the assumption that we do not know the
form of (4.1) for the K.d.V. equation, which in reality is a 2 x 2 version of (4.1) with F linear
in # and A. For the K.d.V. equation with three space derivatives, a matching form for the time
evolution of y is

v, = Gu,ug,uy,)y. (4.2)

Our task is to find the forms of F and G when u satisfies the K.d.V. equation. Cross
differentiation gives

E = G,+[G,F] (4.3)

where [G, F] = GF—FG. From now on we shall just assume the G and F are n X n matrices.
Our first assumption is that F'is a function of  only. Substituting for u; from the K.d.V. equation
itself, we find

(6uux - uzzz) Fu = Uy Gu tugy Gux tlgay Guxx + [Ga F]- (4.461)

This now becomes an algebraic problem in « and its derivatives. Matching coefficients of u,,,
in (4.44a) we find
G, =—F, so G=—u, F+o(uu). (4.406)

Ugx

Using this in the remnant of (4.44) we obtain
Buuy F, = [a, Fltug io, —[Fy, Fl—ug Byt tug o, (4.5)
Since neither F nor a contain u,,, its coeflicient must be zero, thereby giving
a = jug By +ug[Fy, F1+B(u); (4.6)

p(u) can then be determined from the remnant of (4.5) and the process continued until we
obtain a set of conditions upon F(u) from the various coeflicients of u3, u2, etc. These are

Fyu = 0, (4.7a)
[(F, Flo+3[Fyu, F1 =0, (4.76)
By = 6uky, —[[F,, F1, F], (4.7¢)
[8,F] = 0. (4.7d)

[ 23]
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Equation (4.74) can be solved immediately to give
F=X+X,u+X,u? (4.8)

where Xj, X, and X, are constants of integration, which are matrices of, as yet, unknown
dimension.
In the rest of (4.7) we find

[X17X3] = [X2> X3] = Oa (49(1)
B = 4 X, + 302X, — [ Xy, [ X, X,) ] — bt [ Xy, [ X, X, —u[ X,[X, X,]]+ X, (4.90)

Defining [X;, X,] = — X,,[X}, X;] = X; and [X,, X,] = X, [B, F] = 0 now gives, for each
coefficient of powers of u,

[X1, X1 =0 = [X;, X],

[Xy, X, ]+ Xy, X;]1 =0, [X,, [X,, X,]] =0,
Xy, Xl + [ X5, X,] = 3X,,

X, Xo] + [ Xy, X;]+3[X,, [ X, X;]] = 0.

(4.10)

The bracket relations [X;, X;] = a;; X constitute a Lie algebra. Further brackets can be found
from the Jacobi identities. If a representation for this algebra can be found, i.e. matrices X;
of known dimension can be found that satisfy the commutation relations above, then we have
found F(u) and G(u, u,,u,,) exactly and hence the spectral problem. For those whose primary
interest is finding the spectral problem for a given p.d.e., this method is very useful. Dodd &
Fordy (1983) have worked out a set of rules that can be used to find an algebra and then find
its representation. This method also has the advantage of failing quite spectacularly when the
equation is not integrable. For instance, if we take a K.d.V.-type equation with a #3u,
nonlinearity then the algebra is empty and no spectral problem exists.

The classification of the type of algebra is important. For most of those equations mentioned
in §2, the algebras obtained will be copies of sl (2, R) or, more generally, sl (2, C) (2 x 2 traceless
matrices). The standard basis for sl (2,C) is

: 1 0 0 1 0 0
h_[O _1], e+—[0 O]’ e_—[l O]’ (4.11a)
which satisfy the commutation relations
[hye ] = *2e,, [ey,e]=h (4.115)

The general method described above was first put forward by Wahlquist & Estabrook (1975),
who used the language of differential geometry. Since then Dodd & Fordy (1983) have turned
the method into more of an algorithm for finding spectral problems and give various rules and
methods for finding the representation for the algebra. If sl (2, C) does not work, then one must
try sl (3,C), such as in the case of the Boussinesq equation or the long-wave-short-wave
equations. For the K.d.V. algebra given above we first notice that since the K.d.V. equation
has the scale symmetry x— A"1x, > A73¢, u—> A%y, then the algebra can be rescaled in a similar
way, for example X, = AX,, X, = A71X,, etc. Using this fact and using the various rules in
algebra for identifying nil-potent matrices one can easily find

F=—e +(A2—u)e_ (4.12)

[ 24 ]
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and a similar expression for G. These both require a certain amount of effort in identifying
the elements X; in terms of the basis of sl (2, C). Equation (4.12) is now

-1 )

which becomes, on the elimination of ¥,
(—02/0x%+u) Yy = A%, (4.13b)

Equation (4.135) is exactly our Schrédinger spectral problem. Although this result was
known anyway, the method described above has been successful in finding previously unknown
spectral problems (Dodd & Gibbon 1977; Dodd & Fordy 1982, 1983) and will yield all the
standard ones. It is therefore useful as a test of integrability.

The above has been a very crude and brief description of how these equations are connected
with Lie algebras. The much deeper problem, which is addressed by the pure mathematicians
in the subject, really turns the problem on its head. One can argue that these algebras are the
fundamental objects and classification of these will give the global picture with regard to
integrable systems. It is in this direction that much work has been directed, particularly along
the line of so-called Kac—-Moody algebras. The Kac-Moody extension of an algebra, in crude
terms, is to take a Laurent polynomial q, say,

a= Y a7, (4.14)
i=—N
whose coefficients belong to the algebra in question, i.e. in this case a;€sl(2,C). These
Kac—Moody extensions can be graded by choosing appropriate powers of z. The papers by
Dr Wilson and Professor Frenkel, in this symposium, contain a discussion of this approach.

5. INTEGRABILITY AND THE PAINLEVE METHOD

Most of the ideas expressed in the papers in this symposium, with the exception of Professor
van Moerbeke’s, have been appropriate for either p.d.es or differential difference equations like
the Toda lattice. The idea of integrability was discussed by Euler, Lagrange, Poincaré and
others in their work in mechanics. The motion of a rigid body is a famous example from the
last century of a problem that is only integrable in special cases. The Euler—Poisson equations
are six coupled, first-order differential equations in three components of angular velocity and
three angles. The moments of inertia (4, B,C) and the centre of gravity coordinates are
adjustable. There are three standard integrals (mass, energy and momentum), and given
standard reductions, the problem reduces to finding a fourth integral.

Kovalevskaya (1890) studied this problem by looking for a fourth integral via the
singularities of the equation. She found that movable poles only exist for four special cases:
the three known ones (4 = B = C;x, =y, = z, = 0; 4 = B, x, = y, = 0) and a new fourth one
(A= B =2C,z,=0). The fourth integral was indeed identified in this new case. To look for
movable poles in complex time one needs to prove the existence of a Laurent series

X() = (=t)" 3 ap(—tg)™ (5.1)

m=0

[ 25 ]
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The value of n at leading order, which must be integer, is easily determined by the problem
under study. The best example of this is the Hénon-Heiles (1964) system

% = —Ax—2Dxy, (5.2a)
§ = —By— Dx?+ Cy*. (5.25)

For A = D/C, Chang et al. (1982) found that this method yields only four values, A = —1,
—3%, —#% —1e for which a Laurent series exists with integer leading order, and they were indeed
able to identify a new fourth integral for the A = —; case. This method is intimately connected

with that of Painlevé (see Ince 1956), who studied equations of the type

d% _ .(dy )
dx2_F(dx’y’x ’

where F is analytic in x and rational in y and dy/dx. He found 50 types whose only movable
singularities were poles, 44 of which have solutions in terms of known functions (for example
elliptic) and six that have become known as the Painlevé transcendents. Consequently, those
equations that have the property that solutions have only movable poles, are said to have the
Painlevé property.

This property has an intimate connection with completely integrable p.d.es. Ablowitz et al.
(1980) were the first to show this. They were able to show that reductions of an integrable
p.d.e. by, for instance, a similarity transformation, produced an o.d.e. that had the Painlevé
property. The m.K.d.V. equation in fact becomes the second Painlevé transcendent when in
similarity form. A more general approach would be to see if a Laurent series, as in (5.1), could
be found for the p.d.e. without any reduction to an o.d.e. Weiss ¢t al. (1983) have indeed shown
that this can be done if one replaces the t—#, by a function ¢(x, f). This is needed because the
singularities of functions of more than one complex variable cannot be localized. Hence we look
for a Laurent series of the form

u(x, t) =@ " 2 u, ", (5.3)
m=0

except that the coeflicients u,, must now be functions of ¥ and ¢. I will again use the K.d.V.

equation as an example. To balance the uu, and u,,, terms we must obviously have n = 2.

zXT
Substitution of (5.3) into the K.d.V. equation yields a recursion relation

PLm+ 1) (m—4) (m—6) 1y, = Flityy_y, . g} Qs Pie-)- (5.4)

Clearly, this recursion relation is not defined when m = 4 and 6 and so u, and u, are arbitrary.
These are called resonances. We find

m=0, u,=2q2, (5.4a)
m=1, u =—2p,,, (5.456)
m=2, @Qp@— 6@+ 4P, Qrop— 3¢k, = 0, (5.4c)
m=3, @Qu—06uy@,,+6u, @+ .. =0. (5.44d)

If the resonance functions are set to zero: ¥, = ug = 0, and we demand that u, is another solution
of the K.d.V. equation, then we find that all u,, =0 for m > 3 and higher compatibility
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conditions are satisfied. Putting this all together we find

2

u=u,—2 e In g, (5.5a)
(px(pt_6u2¢§+4(pz(pxxx_3¢?m =0, (5.5b)
(pzt_6u2 (pzz+(pzzzz =0. (5'56)

The Laurent series has truncated itself and ¢ and two solutions of the K.d.V. (z and u,) are
coupled together in three equations. This has a close relation with the Schréodinger spectral
problem. Let us eliminate u, from (5.55) and (5.5¢), and find an expression for ¢ that we can
integrate once and introduce a constant 6A. Then we eliminate ¢-derivatives in the same
equations and use the same result. We find

ik 0 0

This equation is none other than a squared eigenfunction relation for the Schrodinger problem!
Let ¢, = ¥2, then ¢ satisfies

— 0% JOxP - uy = A (5.7)

We conclude that this more general Painlevé method does indeed give the correct spectral
problem for a completely integrable p.d.e. While not identical to the o0.d.e. method in the sense
that its Laurent series self-truncates automatically, the idea is nevertheless a generalization of
the o.d.e. method and therefore generalizes Kovalevskaya’s original idea. These results also fit
in with Hirota’s direct method (Hirota 1980). Equations (5.5) can be thought of as constituting
a Backlund transformation. Let « and u, be two adjacent solutions in a set {u®} of solutions
of the K.d.V. equation. Let

f(i) — (pi—lf(i—l)ﬂ (580)
then the f® satisfy (Gibbon et al. 1985)

[(D4+D, D) f D (x,8) fO(x, )] ey = O (5.8)
t=t
for every 7, where «® = —2(In f®)__ and
o 0 0 0
©= 3 3 and thé;_&' (5.8¢)

Equation (5.85) is the Hirota (1980) reduction of the K.d.V. equation to bilinear form and
furthermore equation (5.54) is the Crum transformation (Crum 1955), which is used to add
in or take out an eigenvalue of the Schrédinger operator.

The idea of the Painlevé property is used in Dr Ward’s paper in this symposium. While
solutions of the self-dual Yang-Mills equations can be shown to be meromosphic in any gauge
(Ward 1984), difficulties arise in proving this result for the K.d.V. equation because it is
hypothetically possible that other solutions might exist that do not have the simple Laurent
type expansion (5.3). While these ideas are by no means entirely understood, the fact that
integrable systems, in some loose sense, possess the Painlevé property is an interesting fact,
particularly since the procedure (5.3)—(5.8) yields a squared eigenfunction relation for the
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Schrodinger spectral problem in a natural way and is also intimately related to Hirota’s method.
While the Painlevé test can be useful, it has one drawback that nobody has yet discovered how
to avoid. For instance, if we take the K.d.V. equation and change it into the variable p through
the transformation # = In p, we would find that the p.d.e. in p would fail the Painlevé test since
it would contain an essential singularity. It might be possible to remove essential singularities
by some cunning transformation, but unless we know how to do so, all we can say is that the
failure of the Painlevé test means that the equation is not of Painlevé type in those variables. There
might be some transformation that transforms it into Painlevé form, but unless this can be found
by luck orsleight of hand, no information is gained. Furthermore, this method gives no guarantee
that all possible solutions of the equation concerned can be found from the initial Laurent series.

6. CONCLUSION

The only reasonable conclusion that can be made to an introductory paper such as this is to
point the reader towards some of the other papers presented in this symposium and give
references to some of those topics not mentioned.

While I have endeavoured to show that the highly special nature of integrable systems is
no barrier to their usefulness since they can be canonical under favourable circumstances,
nevertheless, an understanding of how integrable systems are affected by perturbations is
important. As Ablowitz ez al. (1974) have pointed out, the inverse scattering transform is like
a form of nonlinear Fourier analysis. The spectrum, particularly the discrete part, can be likened
to the ‘normal modes’ of the system. Perturbing the equations by adding extra terms perturbs
these eigenvalues. This approach has been pursued by Kaup & Newell (1978), Keener &
McLaughlin (1979) and Karpman & Maslov (19774-¢) with moderate success. A totally
different type of problem that is, as yet, unsolved is the initial boundary value problem for these
equations. Professor Keller’s paper in this symposium provides an excellent example of this
when considering the generation of trains of solitons in a towing tank. As a general problem, we
need to solve a problem with zero initial data u(x,0) = 0, but with u(x,?) = f(x) over some
range of x for all z. This type of problem has received relatively little attention over the years
and will no doubt become increasingly important.

In the papers by both Professor Frenkel and Dr Wilson, there is mention of the so-called
7-function, a name invented by Sato and co-workers at Kyoto University. The 7-function turns
out to be Hirota’s f~function (see equation (5.8)). Hirota (1980) used the transformation

o2

u=—2a§ln7, T=/, (6.1)

to reduce the K.d.V. equation to the bilinear form

(Di4+D, D)) 7(x,8) T(x', ') | =g = O. (6.2)

=t
The Japanese workers have shown that this type of bilinear form arises as a consequence
of the properties of the vertex operators associated with infinite-dimensional Lie algebras
(Jimbo & Miwa 1983). While the straight soliton solutions are easy to find from (6.2), a large
range of other solutions exist, such as polynomials in x and ¢ for 7, which give rational solutions
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for u. Jacobi #-function solutions for 7 also exist among other more complicated elliptic function
solutions. Dr Wilson connects some of the Japanese work on the 7-function and Kac-Moody
algebras with Russian work on algebraic curves (Krichever 1977) from which some of these
f-function solutions originally arose. Dr Wilson and Dr Ercolani both mention the fact that
the elements of these sorts of ideas for o.d.es go back as far as Baker (1895) and Burchnall &
Chaundy (1922). This only reinforces the observation that the modern subject of integrable
systems has indeed a long pedigree and is, to a certain extent, rediscovering and generalizing
some old results from the last quarter of the last century. What were once thought of as old
and fossilized results are now turning out to be the precursors of new and exciting work.

APPENDIX |

The most rigorous derivation and consideration of inverse problems in this context is by Deift
& Trubowitz (1979), but the book by Ablowitz & Segur (1981) gives a perfectly adequate
account of the ideas without the results being obscured by rigour. Here I give a deliberately
crude sketch of how the Gelfand-Levitan equation can be derived from the integral
representations for ¥ and ¥ given in (2.7). As they are written, they are assumptions that we
will not prove here, although the result is perfectly correct. It is also possible to establish that
@ exp (ikx) and ¢ exp (—ikx) and aare analyticin the upper half-planeand ¥ exp (ikx) isanalytic
in the lower half-plane. Using the integral representations in (2.3), we find that

o] [ee]
®/a= e'i’”‘+f K(x,s) e7iks ds+£—(e““+f K el¥s ds) (I1)

x x

and so for y > x,
L Peiky g = K(x,y)+ B, (x+y) +i exp [ik(y—x)] dk (I2a)
: 2n) _, a ’ ¢ 2n ’
1 [ b |
where B, (x) = — — eth@ df. I12b
¢ 2n a
—00

On the assumption that a(k) has simple zeros at £ = ix,, we note that the left side of (I 2a)
becomes

L [Py gp—i 3 Pngrny_ L ik(y—
2uf_ooae dk=1i % “te P CRexp[lk(y x)] dk, (I3)

n=1 %

which is obtained by a contour integration and Cp is a semicircular contour in the upper
half-plane. For y > x, this contour integral is zero, and at the discrete eigenvalues k£ = ik, we
have a(ik,,) = 0; a;, is the residue of a from Cauchy’s theorem. Since a(ix,) = 0 we have from
(2.3) that <pn/a;z is proportional to ¥, and so, replacing ¥, from (2.74), we have

1 0 . . N 0 N
o] Ty =i 3 oy expi—ry )]+ [ K 3 o explruly+lds (14
2r —0 @ n=1 z n=1

N
Defining B(x) = 2 ¢, e*n+B,(x) (I5)
n=1
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and using (I 4) in (I 24) we have finally
K(x,y)+B(x+y)+f K(x,5) B(s+y) ds =0, (I6)
x

where K = Ksince ¥ (x, k) = ¥ (x, —k). Equation (I 6) is the Gel’fand-Levitan equation (2.84).
To find the relation between u(x,f) and K(x,y) we substitute the integral representation for
¥ into (2.10) and find

u(x,t) = —2 dK(x,x)/dx, (I7a)
K,,—K,, = uk. (I17b)
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